[1]张虎.基于灵活性设备改造成本的灵活性调节服务优化模型[J].电力电容器与无功补偿,2021,(01):120-127.[doi:10.14044/j.1674-1757.pcrpc.2021.01.020]
 ZHANG Hu.Optimal Model of Flexibility Adjustment Service Based on Flexible Equipment Modification Cost[J].Power Capacitors & Reactive Power Compensation,2021,(01):120-127.[doi:10.14044/j.1674-1757.pcrpc.2021.01.020]
点击复制

基于灵活性设备改造成本的灵活性调节服务优化模型()
分享到:

《电力电容器与无功补偿》[ISSN:1674-1757/CN:61-1468/TM]

卷:
期数:
2021年01期
页码:
120-127
栏目:
系统应用研究
出版日期:
2021-02-20

文章信息/Info

Title:
Optimal Model of Flexibility Adjustment Service Based on Flexible Equipment Modification Cost
作者:
张虎
国家电网有限公司, 北京 100031
Author(s):
ZHANG Hu
State Grid Corporation of China, Beijing 100031, China
关键词:
灵活性 设备改造 平均成本 优化模型 电力市场
Keywords:
flexibility equipment modification average cost optimization-model electricity market
DOI:
10.14044/j.1674-1757.pcrpc.2021.01.020
摘要:
灵活性调节服务对高渗透率可再生能源电网的稳定运行具有重要意义,需要对现有的灵活性供给设备进行灵活性改造,其改造策略决定了灵活性调节服务的前期成本,也在一定程度上决定了其在灵活性辅助服务市场的竞争力。提出了一种基于灵活性设备改造成本的灵活性调节服务优化模型。首先介绍了灵活性以及灵活性调节服务的概念。其次,给出了对火电机组、储能设备等提供灵活性调节服务的设备进行灵活性改造的策略。最终依据此改造策略对提供灵活性的成本进行计算,并基于古诺竞争模型构建了两层电力市场出清优化均衡模型,并使用典型数据对该模型进行了模拟运算与分析,所得结果验证了本文提出策略的有效性和正确性。
Abstract:
Flexibility regulation service is of great significance to the stable operation of renewable energy grid with high permeability. Flexible modification is needed for the existing flexible supply equipment. Its modification strategy determines not only the initial cost of flexible adjustment service but also, to a certain extent,its competitiveness in the flexibility auxiliary service market. A flexibility adjustment service optimization model based on the cost of flexibility equipment transformation is proposed. Firstly, the concept of flexibility and flexibility accommodation service is introduced. Then, the strategy of flexible modification for thermal power units, energy storage equipment and other equipment providing flexibility regulation services is given. Finally, based on this transformation strategy, the cost of providing flexibility is calculated and, on the basis of cournot competition model, a two-layer power market clearing optimization equilibrium model is constructed. The model is simulated and analyzed with typical data, and the results verify the effectiveness and correctness of the proposed strategy.

参考文献/References:

[1] MAJZOOBI A,KHODAEI A. Application of microgrids in supporting distribution grid flexibility[J]. IEEE Transactions on Power Systems,2017,32(5): 3660-3669.
[2] 国家发展和改革委员会能源研究所. 中国2050 高比例可再生能源发展情景暨路径研究[R]. 北京:国家发展和改革委员会能源研究所,2015.
[3] WANG Ye,DELILLE G,BAYEM H,et al. High wind power penetration in isolated power systems-assessment of wind inertial and primary frequency responses[J]. IEEE Transactions on Power Systems,2013,28(3): 2412-2420.
[4] JIA Li,FENG Liu,LI Zuyi,et al. Grid-side flexibility of power systems in integrating large-scale renewable generations: A critical review on concepts,formulations and solution approaches[J]. Renewable and Sustainable Energy Reviews,2018(93): 272-284.
[5] AGENCY I E. Empowering variable renewables: Options for flexible electricity systems[J]. Sourcecode Energie,2009,volume 2009: 1-36.
[6] PETER D L,LINDGREN J,MIKKOLA J,et al. Review of energy system flexibility measures to enable high levels of variable renewable electricity[J]. Renewable and Sustainable Energy Reviews,2015,45(45): 785-807.
[7] WU Chengye,HUG G,KAR S. A functional approach toassessing flexible ramping products’ impact on electricitymarket[C]//Proceedings of 2015 IEEE Power & Energy Society Innovative Smart Grid Technologies Conference(ISGT). Washington,DC:IEEE,2015:1-5
[8] WANG Beibei,HOBBS B F. A flexible ramping product:can it help real-time dispatch markets approach thestochastic dispatch ideal [J]. Electric Power Systems Research,2014,109:128-140
[9] XIAN W,YUZENG L,SHAOHUA Z. Oligopolistic equilibrium analysis for electricity markets:a nonlinear complementarity approach[J]. IEEE Transactions on Power Systems,2004,19(3): 1348-1355.
[10]王晛,李渝曾,张少华. 求解电力市场均衡模型的非线性互补方法[J]. 电力系统自动化,2004,28(1):7-11.
WANG Xian,LI Yuceng,ZHANG Shaohua. A nonlinear complementary approach to the solution of equilibrium models for electricity markets[J]. Automation of Electric Power Systems,2004,28(1): 7-11.
[11]王晛,王留晖,张少华. 风电商与DR 聚合商联营对电力市场竞争的影响[J]. 电网技术,2018,42(1):110-116.
WANG Xian,WANG Liuhui,ZHANG Shaohua,et al. Impacts of cooperation between wind power producer and DR aggregator on electricity market equilibrium[J]. Power System Technology,2018,42(1):110-116.
[12]邵志奇,毛森茂,陈扬华,等.考虑土地成本的变电站多目标无功规划方法[J].电力电容器与无功补偿,2019,40(5):79-84.
SHAO Zhiqi,MAO Senmao,CHEN Yanghua,et al.Multi-objective reactive power planning method for substation considering land cost[J].Power Capacitors & Reactive Power Compensation,2019,40(5):79-84.
[13]吴晋波,熊尚峰,徐昭麟,等.基于综合成本的电网AVC协调优化策略研究[J].电力电容器与无功补偿,2020,41(1):207-214.
WU Jinbo,XIONG Shangfeng,XU Zhaolin,et al.Study on coordinated optimization strategy of power network AVC based on comprehensive cost[J].Power Capacitors & Reactive Power Compensation,2020,41(1):207-214.
[14]谷万江,王飞,田小蕾,考虑储能及碳交易成本的电热联合系统优化调度策略[J]. 电网与清洁能源,2020,36(7):109-118.
GU Wanjiang,WANG Fei,TIAN Xiaolei,et al.Optimal scheduling strategy for electric-thermal combined system considering energy storage and carbon trading cost[J].Power System and Clean Energy,2020,36(7):109-118.
[15]王明捐,刘友波,高红均,等.计及运行成本风险的主动配电网两阶段随机模型预测控制[J]. 电网与清洁能源,2020,36(11):8-18.
WANG Mingjuan,LIU Youbo,GAO Hongjun,et al.A two-stage stochastic model predictive control strategy for active distribution network considering operation cost risk[J].Power System and Clean Energy,2020,36(11):8-18.
[16]DREW F,JEAN T. Game theory[M]. Cambridge: Mit Press,2013.
[17]陈亮,孙德锋,卓金全. 退化情形下高斯-赛德尔迭代法的几个问题[J]. 数值计算与计算机应用,2019,40(2):98-110.
CHEN Liang,SUN Defeng,ZHUO Jinquan. Some problems on the gauss-seidel iteration method in degenerate cases[J]. Journal on Numerical Methods and Computer Applications,2019,40(2): 98-110.
[18]超木日力格. 基于雅克比矩阵的软划分聚类算法分析[D]. 北京:北京交通大学,2017.
[19]李滨,韦化,李佩杰. 电力系统无功优化的内点非线性互补约束算法[J]. 电力自动化设备,2010,30(2):53-58.
LI Bin,WEI Hua,LI Peijie. Interior-point nonlinear algorithm with complementarity constraints for reactive-power optimization[J]. Electric Power Automation Equipment,2010,30(2): 53-58.

备注/Memo

备注/Memo:
收稿日期:2020-07-05 作者简介: 张虎(1986—),男,高级工程师,从事电力稳定分析和可再生能源开发工作。
更新日期/Last Update: 2021-02-20