[1]国江,马跃,朱庆东,等.高压全膜电容器内熔丝温度场仿真分析[J].电力电容器与无功补偿,2020,41(5):74-80.[doi:10.14044/j.1674-1757.pcrpc.2020.05.013]
 GUO Jiang,MA Yue,ZHU Qingdong,et al.Thermal Field Simulation Analysis of Internal Fuse in High Voltage Film Capacitors[J].Power Capacitors & Reactive Power Compensation,2020,41(5):74-80.[doi:10.14044/j.1674-1757.pcrpc.2020.05.013]
点击复制

高压全膜电容器内熔丝温度场仿真分析()
分享到:

《电力电容器与无功补偿》[ISSN:1674-1757/CN:61-1468/TM]

卷:
41卷
期数:
2020年第5期
页码:
74-80
栏目:
电容器
出版日期:
2020-10-30

文章信息/Info

Title:
Thermal Field Simulation Analysis of Internal Fuse in High Voltage Film Capacitors
作者:
国江1马跃2朱庆东3朱文兵3黄想1
1. 中国电力科学研究院有限公司,武汉430074; 2. 国家电网有限公司,北京100031;3. 国网山东省电力公司电力科学研究院,济南250001
Author(s):
GUO Jiang1MA Yue2ZHU Qingdong3ZHU Wenbing3HUANG Xiang1
1. China Electric Power Research Institute,Wuhan 430074,China;2. State Grid Corporation of China, Beijing 100031,China;3. State Grid Shandong Electric Power Company Electric Power Research Institute,Jinan 250001,China
关键词:
高压全膜电容器内熔丝温度场仿真分析
Keywords:
highvoltagefilmcapacitorinternalfusethermalfieldsimulation
DOI:
10.14044/j.1674-1757.pcrpc.2020.05.013
文献标志码:
A
摘要:
随着电容器单元容量的逐渐增大,电容器内熔丝的温升也在逐步提高,为了防止绝缘油在 内熔丝的高温作用下出现加速老化,因此在设计时有必要对其温升进行计算和校核。论文针对高 压全膜电容器内熔丝温升计算方法开展研究。鉴于电容器内部结构复杂,因此分两步对内熔丝温 度进行仿真分析。首先在对电容器内部结构进行简化和等效的基础上,建立了不包含内熔丝的电 容器单元温度场仿真模型,对电容器内部元件的温度场进行了仿真分析,然后利用计算结果作为边 界条件,建立了包含内熔丝的电容器局部温度场仿真模型,从而最终得到内熔丝的温升结果。论文 以特高压交流工程用高压并联电容器为例进行了计算,对最严酷工况下内熔丝的温度进行了校核, 结果表明内熔丝最高温度为74.056℃,满足要求。相关研究结果可以用于指导高压全膜电容器内 熔丝的结构设计。
Abstract:
With the gradual increase of unit capacity of the capacitor,the temperature of the internal fuse in the capacitor also rises gradually. In order to prevent the insulating oil from aging in the internal fuse under the action of high temperature,it is therefore necessary to calculate and check its temperature rise in the design. In this paper,the calculation method of internal fuse in high voltage film capacitors is studied. Considering the complex internal structure of capacitor,the temperature of internal fuse is simulated and analyzed in two steps. Firstly,on the basis of simplification and equivalence of the internal structure,a thermal field simulation model of capacitor without internal fuse is established. The thermal field of the element inside the capacitor is simulated and analyzed,then the thermal field of partial field of capacitor with internal fuse is set up by the use of calculation result as boundarycondition,finally the temperature rise result of the internal fuse is obtained. In this paper,the calculation is made by taking the high voltage parallel capacitor for UHV AC project as an example and the temperature of internal fuse at severe condi? tion is checked. It is shown by the result that the maximum temperature of the thermal fuse is 74.056℃, which meets the requirements. The related research results can be used to instruct the structural design of internal fuse in high voltage film capacitor.

参考文献/References:

[1] 张之昊,武建文,李平,等. 应用于农村配电网的测量点 与补偿点分离式无功补偿设备及其优化配置[J]. 电工 技术学报,2015,30(3):205?213. ZHANG Zhihao,WU Jianwen,LI Ping,et al. Reactive power compensation and its optimal allocation with measurement part and compensation part separated in rural power grid[J]. Transactions of China Electrotechnical Society,2015,30 (3):205?213.
[2] 季玉琦,耿光飞. 变电站并联补偿容量不等分组方法[J]. 电力系统自动化,2015,39(3):90?94. JI Yuqi,GENG Guangfei. Unequal grouping of parallel com? pensation capacity in substation[J]. Automation of Electric Power Systems,2015,39(3):90?94.
[3] 陈柏超,宋继明,周攀,等. 基于MCR和MSVC的220 kV 变电站多电压等级无功电压综合控制[J]. 电工技术学 报,2015,30(16):230?237. CHEN Baichao,SONG Jiming,ZHOU Pan,et al. MCR and MSVC based voltage and reactive power combination con? trol of different voltage level in 220 kV substation [J]. Transactions of China Electrotechnical Society,2015,30 (16):230?237.
[4] 倪学锋,刘瑞云,林浩,等. 关于无熔丝电容器和内熔丝 电容器优劣的一点看法[J]. 电力电容器与无功补偿, 2012,33(5):28?32. NI Xuefeng,LIU Ruiyun,LIN Hao,et al. Opinion about merits and demerits of internally fused capacitor and fuse? less capacitor [J]. Power Capacitor & Reactive Power Com? pensation,2012,33(5):28?32.
[5] 周登洪,马变珍. 高压电力电容器用内熔丝[J]. 电力电容 器与无功补偿,2009,30(1):16?17. ZHOU Denghong,MA Bianzhen. Internal fuse for high volt? age power capacitor [J]. Power Capacitor & Reactive Power Compensation,2009,30(1):16?17.
[6] 王子建,徐志钮,华征,等. 一种高压电容器单元中内熔 丝保护性能校验方法:2015108814873[P]2015?12?04.
[7] 严飞,何慧雯,王子建,等. 高压电容器单元用内熔丝性能[J]. 高电压技术,2016,42(6):1790?1796. YAN Fei,HE Huiwen,WANG ZI Jian,et al. Internal fuse performance of high voltage capacitor unit [J]. High Volt? age Engineering,2016,42(6):1790?1796.
[8] 国江,倪学锋,陈江波,等. 交流特高压工程用并联电容 器内熔丝设计及性能测试研究[J]. 电测与仪表,2015, 52(19):96?100. GUO Jiang,NI Xuefeng,CHEN Jiangbo,et al. Design and characteristics test research of shunt capacitor internal fu? seused in AC UHV project [J]. Electrical Measurement & Instrumentation,2015,52(19):96?100.
[9] 房金兰. 我国电力电容器技术的发展[J]. 电力电容器与 无功补偿,2010,31(1):1?4. FANG Jinlan. Development of power capacitor technology in China[J]. Power Capacitor & Reactive Power Compensa? tion,2010,31(1):1?4.
[10]黄玲,黄有祥. 温度对集合式全膜并联电容器使用寿命 影响的研究[J]. 电力电容器,2006(2):35?39. HUANG Ling,HUANG Youxiang. Research for influence of temperature on the operation life of assembled all?film shunt capacitor [J]. Power Capacitor,2006(2):35?39.
[11]沈文琪. 并联电容器的可靠性与温度的关系[J]. 电力电 容器,1987(4):14?21. SHEN Wenqi. Relationship between reliability of shunt ca? pacitorandtemperature[J].PowerCapacitor,1987(4):14?21.
[12]张建军,孙红华,肖寒,等. 环境温度对运行中高压并联 电容器影响的分析[J]. 电力电容器与无功补偿,2016,37 (1):6?10. ZHANG Jianjun,SUN Honghua,XIAO Han,et al. Analy? sis of the influence of ambient temperature on high voltage shunt capacitor in operation [J]. Power Capacitor & Reac? tive Power Compensation,2016,37(1):6?10.
[13]华征,王召盟,徐梦蕾,等. 高压全膜电容器三维温度场数 值计算分析[J].电力电容器与无功补偿,2017,38(2):94?99. HUA Zheng,WANG Zhaomeng,XU Menglei,et al. Calcu? lation analysis of 3D temperature field algorithm of high? voltage all?film capacitor [J]. Power Capacitor & Reactive Power Compensation,2017,38(2):94?99.
[14]倪学锋,王子建,林浩,等. 特高压用并联电容器温度场 仿真[J]. 高压电器,2016,52(2):107?114. NI Xuefeng,WANG Zijian,LIN Hao,et al. Temperature field simulation of shunt power capacitor used to UHV engi? neering[J]. High Voltage Apparatus,2016,52(2):107?114.
[15]华征,侯智剑,戚岭娜,等. 基于Fluent的集合式并联电 容器内部温度场仿真分析[J]. 电力电容器与无功补偿, 2016,37(4):37?42. HUA Zheng,HOU Zhijian,QI Lingna,et al. Internal tem? perature field simulation analysis of assembled shunt ca? pacitor based on fluent [J]. Power Capacitor & Reactive Power Compensation,2016,37(4):37?42.
[16]陈伟,严飞,王子建,等. 特高压工程用并联电容器单元 热稳定性[J]. 高电压技术,2018,44(6):1853?1860. CHEN Wei,YAN Fei,WANG Zijian,et al. Thermal stabili? ty performance of shunt capacitor unit for UHV project [J]. High Voltage Engineering,2018,44(6):1853?1860.
[17]王子建,严飞,侯智剑,等. 高压全膜电容器热稳定性能 试验条件下的温度场特性[J]. 电工技术学报,2016,31 (17):207?216. WANG Zijian,YAN Fei,HOU Zhijian,et al. Thermal field characteristics of high voltage film capacitors in thermal stability test [J]. Transactions of China Electrotechnical So? ciety,2016,31(17):207?216.
[18]张建军,孙红华. 高压并联电容器在线监测系统的研究 [C]//2012输变电年会(上海):中国电机工程学会变电专 业委员会,2012.
[19]林浩,倪学锋,姜胜宝,等. 80 Mvar集合式并联电容器内 部温度场数值计算分析[J]. 电力电容器与无功补偿, 2018,39(4):64?70. LIN Hao,NI Xuefeng,JIANG Shengbao,et al. Calculation analysis on internal temperature field algorithm of 80 Mvar assembled shunt capacitor [J]. Power Capacitor & Reactive Power Compensation,2018,39(4):64?70.
[20]马变珍. 并联电容器的设计结构改进[J]. 电力电容器, 2007(2):28?29. MA Bianzhen. The structural design improvement of shunt capacitor [J]. Power Capacitor,2007(2):28?29.
[21]李兆林,陈松,刘军. 电力电容器用苄基甲苯油性能研 究[J]. 电力电容器,2007,28(4):47?52. LI Zhaolin,CHEN Song,LIU Jun. Study on properties of mono?benzyl?toluene/dibenzyl?toluene mix oil for power ca? pacitors [J]. Power Capacitor,2007,28(4):47?52.
[22]李兆林. 全膜电容器用聚丙烯薄膜主要性能研究[J]. 绝 缘材料通讯,1997(2):20?26. LI Zhaolin. Research of key performance of polypropylene film of all?film capacitor [J]. Insulating Materials,1997(2): 20?26.
[23]高压并联电容器装置使用技术条件:DL/T 604—2009[S]. 2009. Technical specification of high?voltage shunt capacitor in? stallations:DL/T 604—2009[S]. 2009.

备注/Memo

备注/Memo:
收稿日期:2020?03?11
基金项目:国家电网有限公司总部科技项目(特高压并联电容器装置用大容量优比特性电容器单元关键技术研究, 5200-201955076A-0-0-00)。
作者简介: 国江(1985—),男,高级工程师,主要从事电力系统无功 补偿技术及电容器技术研究工作。 马跃(1982—),男,高级工程师,主要从事特高压交流工 程管理工作。 朱庆东(1987—),男,高级工程师,主要从事高电压技术 研究工作。 朱文兵(1980—),男,高级工程师,主要从事高电压技术 研究工作。 黄想(1992—),男,工程师,主要从事电力系统无功补偿 技术及电容器技术研究工作。
更新日期/Last Update: 2020-10-30