[1]陈凌云,程改红,王琼芳,等.四种典型直流故障处理方案下柔性直流输电系统的故障穿越特性对比研究[J].电力电容器与无功补偿,2020,41(5):110-117.[doi:10.14044/j.1674-1757.pcrpc.2020.05.019]
 CHEN Lingyun,CHENG Gaihong,WANG Qiongfang,et al.Comparative Study on DC Fault Ride?through Performances of Flexible HVDC Systems Under Four Typical DC Fault Clearance Schemes[J].Power Capacitors & Reactive Power Compensation,2020,41(5):110-117.[doi:10.14044/j.1674-1757.pcrpc.2020.05.019]
点击复制

四种典型直流故障处理方案下柔性直流输电系统的故障穿越特性对比研究()
分享到:

《电力电容器与无功补偿》[ISSN:1674-1757/CN:61-1468/TM]

卷:
41卷
期数:
2020年第5期
页码:
110-117
栏目:
系统应用研究
出版日期:
2020-10-30

文章信息/Info

Title:
Comparative Study on DC Fault Ride?through Performances of Flexible HVDC Systems Under Four Typical DC Fault Clearance Schemes
作者:
陈凌云1程改红1王琼芳1严铭2张哲任2徐政2
1. 中国电力工程顾问集团中南电力设计院有限公司,武汉430071;2. 浙江大学电气工程学院,杭州310027
Author(s):
CHEN Lingyun1CHENG Gaihong1WANG Qiongfang1YAN Ming2ZHANG Zheren2XU Zheng2
1. Central Southern China Electric Power Design Institute Co.,Ltd. of China Power Engineering Consulting Group Co.,Ltd.,Wuhan 430071,China; 2. College of Electric Engineering,Zhejiang University,Hangzhou 310027,China
关键词:
直流故障处理方案直流故障穿越特性对比DCCBFHMMCLCC-D-MMCLCC-MMC 混合级联
Keywords:
DC fault clearance schemescomparison of DC fault ride?through performancesDC circuit breakerFHMMCLCC-D-MMCLCC-MMChybridtopology
DOI:
10.14044/j.1674-1757.pcrpc.2020.05.019
文献标志码:
A
摘要:
与电网换相换流器(line commutated converter,LCC)相比,基于模块化多电平换流器(modular multilevel converter,MMC)的柔性直流输电系统最主要问题在于直流故障的处理,目前学术界和工 业界已提出多种具备直流故障自清除能力的柔性直流输电系统。为了更好地了解这些柔性直流输 电系统的优劣,很有必要对其直流故障特性进行分析。本文针对4 种典型的具备直流故障自清除 能力的柔性直流输电系统,分析比较了他们的直流故障穿越特性。首先,本文总结了4 种典型直流 故障处理方案,包括:采用直流断路器、采用全桥子模块与半桥子模块构成的混合子模块换流器 (FHMMC)、采用基于LCC 和MMC 并在MMC 直流出口处安装大功率二极管阀组构成的混合直流 输电系统(LCC-D-MMC)、采用LCC 和MMC 混合级联的换流站结构。然后,本文分析了这4 种直 流故障处理方案的基本原理、其对应柔性直流输电系统的控制方式以及故障清除机理。最后,在 PSCAD/EMTDC 中搭建了三端高压直流输电系统仿真模型,对比了4 种直流故障处理方案下柔性 直流输电系统的故障穿越特性。仿真结果表明,直流断路器能快速并且有选择地隔离直流故障,其 对应柔性直流输电系统的故障穿越特性最好。考虑直流系统运行的经济性以及灵活性,LCC-MMC 混合级联的拓扑结构在工程上具有一定的实用价值。
Abstract:
Compared with line commutated converter(LCC),the main problem of flexible high voltage direct current(HVDC)system based on modular multilevel converter(MMC)is the DC fault clearance schemes. At present,academic and industrial circles have proposed a variety of flexible HVDC systems with DC fault clearance capability. In order to better understand the advantages and disadvantages of these flexible HVDC systems,it is necessary to analyze their DC fault clearance characteristics. For the four typical flexible HVDCsystemswithDCfaultclearancecapability,thepaperanalyzesandcomparestheirDCfaultride?through performances. Firstly,this paper summarizes four typical DC fault clearance configurations including the DC circuit breaker(DCCB),the hybrid MMC with full bridge submodules and half bridge submodules (FHMMC),the LCC-MMC hybrid configuration with diode groups installed in the DC line close to the con? verters(LCC-D-MMC)and the hybrid topology with an LCC and an MMC in series?connection. Then,the basic structure,control mode and fault clearance schemes of the four configurations based flexible HVDC systems are discussed. Finally,a three?terminal simulation model is built to compare the DC fault clearance characteristics of the four flexible HVDC systems. The simulation result shows that the DCCB can isolate DC faults quickly and selectively,and the DCCB based flexible HVDC system performs the best DC fault clearance characteristics. Considering the cost efficiency and operation flexibility,the LCC-MMC hybrid to? pologyhascertainvalueofpracticalapplicationinengineering.

参考文献/References:

[1] 徐政. 柔性直流输电系统[M]. 第2版北京:机械工业出 版社,2017.
[2] ZHANG Zheren,XU Zheng ,XU Tao. Calculating current and temperature fields of HVDC grounding electrodes [J]. Journal of Modern Power Systems and Clean Energy,2016, 4(2):300?307.
[3] RAHMAN M H,XU Lie,YAO Liangzhong. DC fault protec? tion strategy considering DC network partition[C]//2016 IEEE Power and Energy Society General Meeting(PESGM) [Sl]:IEEE Press,2016:1?5.
[4] 魏承志,史文博,文安. 三端MMC?HVDC换流站直流母 线双极短路故障特性分析[J]. 广东电力,2016,29(9): 63?66. WEI Chengzhi,SHI Wenbo,WEN An. Analysis on charac? teristic of bipolar short?circuit fault of DC bus of three?ter? minal MMC?HVDC converter station [J]. Guangdong Elec? tric Power,2016,29(9):63?66.
[5] 张哲任,徐政,徐雨哲,等. 高压直流输电基本测试系统[J]. 广东电力,2018,31(9):1?12. ZHANG Zheren,XU Zheng,XU Yuzhe,et al. Basic test systems for HVDC [J]. Guangdong Electric Power,2018,31 (9):1?12.
[6] CONSTANZE T,ANNE K,MARTEN D. Westermannnon? telecommunication based DC line fault detection methodol? ogy for meshed HVDC grids [J]. IET Generation Transmis? sion & Distribution,2016,10(16):4231?4239.
[7] ZHANG Zheren,XU Zheng,XUE Yinglin,et al. DC?side harmonic currents calculation and DC?loop resonance anal? ysis for an LCC-MMC hybrid HVDC transmission system [J]. IEEETransactionsonPowerDelivery,2015,30(2):642?651.
[8] XU Zheng,XIAO Huangqing,XIAO Liang,et al. DC fault analysis and clearance solutions of MMC-HVDC systems [J]. Energies,2018,11(4):941?953.
[9] DONG Shuyi,HE Hengxin,YUAN Zhao,et al. Transient over?voltage of the full?bridge MMC HVDC system with overhead line fault[C]//2016 IEEE International Confer? ence on High Voltage Engineering and Application(ICH? VE)China:IEEE Press,2016:1?4.
[10]XU Zheng,XU Yuzhe,XIAO Huangqing,et al. Feasibility study of DC circuit breaker?less MTDC systems [J]. Interna? tional Transactions on Electrical Energy Systems,2019,29 (1):2679?2692.
[11]ZENG Rong,XU Lie,YAO Liangzhong,et al. Design and operation of a hybrid modular multilevel converter [J]. IEEE Transactions on Power Electronics,2015,30(3):1137 ? 1146.
[12]GENG Tang,XU Zheng,ZHOU Yuzhi. Impacts of three MMC?HVDC configurations on AC system stability under DC line faults [J]. IEEE Transactions on Power Systems, 2014,29(6):3030?3040.
[13]XU Zheng,WANG Shijia,XIAO Huangqing Hybrid high? voltage direct current topology with line commutated con? verter and modular multilevel converter in series connec? tion suitable for bulk power overhead line transmission [J]. IET Power Electronics,2016,9(12):2307?2317.
[14]MAGNUS Callavik,ANDERS Blomberg,JURGEN Hafner, et al. The hybrid HVDC breaker?an innovation breakthrough enabling reliable HVDC grids [J]. ABB Grid Systems Tech? nical Paper,ABB:Zurich,Switzerland,2012.
[15]许烽,徐政.基于LCC和FHMMC的混合型直流输电系统[J]. 高电压技术,2014,40(8):2520?2530. XU Feng,XU Zheng. Hybrid HVDC system based on LCC and FHMMC [J]. High Voltage Engineering,2014,40(8): 2520?2530.
[16]徐雨哲,徐政,张哲任,等. 基于LCC和混合型MMC的混 合直流输电系统控制策略[J]. 广东电力,2018,31(9): 13?25. XU Yuzhe,XU Zheng,ZHANG Zheren,et al. Control strat? egy for hybrid HVDC transmission system based on LCC and hybrid MMC [J]. Guangdong Electric Power,2018,31 (9):13?25.

备注/Memo

备注/Memo:
收稿日期:2020?03?15
基金项目:中国电力工程顾问集团中南电力设计院有限公司科技项目《直流输电系统机电暂态建模及仿真验证研究》。
作者简介: 陈凌云(1978—),女,高级工程师,从事电力系统规划设 计工作。 程改红(1977—),女,高级工程师,从事电力系统规划设 计工作。 王琼芳(1986—),女,工程师,从事电力系统规划研究 工作。 严铭(1995—),男,博士研究生,研究方向为直流输电与 柔性直流输电技术。 张哲任(1988—),男,博士,研究方向为直流输电与柔性 直流输电技术。 徐政(1962—),男,教授,研究方向为大规模交直流电力 系统分析、直流输电与柔性交流输电、风力发电技术与风电 场并网技术。
更新日期/Last Update: 2020-10-30